Maximal subsemigroups of finite semigroups

Wilf Wilson

7th November 2014

Definition (maximal subgroup)

Let G be a group and let H be a subgroup of G. Then H is *maximal* if:

- $H \neq G$.
- $H \leq U \leq G \Rightarrow U = G$.

Definition (maximal subsemigroup)

Let S be a semigroup and let T be a subsemigroup of S. Then T is $\mathit{maximal}$ if:

- $T \neq S$.
- $T \lneq U \leq S \Rightarrow U = S$.

Definition (maximal subsemigroup)

Let S be a semigroup and let $T \leq S$. Then T is *maximal* if:

- $S \neq T$.
- For all $x \in S \setminus T$: $\langle T, x \rangle = S$.

- Maximal sub(semi)groups are as big as possible in some sense.
- They let you find all sub(semi)groups.

- Any subsemigroup lacking just a single element is maximal.
- There can be lots.
- Their sizes can differ.
- They exist (at least for finite semigroups*).

Our first maximal subgroups

Subgroups of prime index are maximal.

Let $S = \{0, 1\}$, with multiplication modulo 2.

Let $S = F_X$, where |X| = n.

For example if $X = \{a, b\}$, then $F_X = \{a, b, aa, bb, ab, ba, aaa, bab, ...\}$.

Let N_n be the null semigroup with n elements (i.e. $a \cdot b = 0$ for all a, b).

A subsemigroup of a finite group is a subgroup*.

So the maximal subsemigroups of a finite group are its maximal subgroups.

Now some pre-requisites.

Definition (idempotent)

An element x of a semigroup is *idempotent* if $x^2 = x$. We call such an element *an idempotent*.

Need to introduce Green's $\mathscr{R}, \mathscr{L}, \mathscr{H}, \mathscr{J}$ relations for a semigroup S.

These are equivalence relations defined on the set S as follows:

- $x \mathscr{R} y$ if and only if $xS^1 = yS^1$.
- $x \mathscr{L} y$ if and only if $S^1 x = S^1 y$.
- $\mathscr{H} = \mathscr{R} \cap \mathscr{L}.$

•
$$x \mathscr{J} y$$
 if and only if $S^1 x S^1 = S^1 y S^1$.

Egg-box diagram of a semigroup (I)

For an element x in a semigroup S, we write W_x to be the \mathscr{W} -class of x.

- A *J*-class is *regular* if it contains an idempotent. Else non-regular.
- \mathcal{J} -classes form a partition.
- $\mathscr{J}\text{-classes}$ are unions of $\mathscr{R}\text{-}$ and $\mathscr{L}\text{-classes}.$
- \mathcal{R} and \mathcal{L} -classes intersect in \mathcal{H} -classes.
- *J*-classes can be partially ordered:

$$J_x \leq J_y \Leftrightarrow S^1 x S^1 \subseteq S^1 y S^1$$

Also note for later that $S^1(xy)S^1 = S^1x(yS^1) \subseteq S^1xS^1$. Hence:

- $J_{xy} \leq J_x$.
- $J_{xy} \leq J_y$ (shown similarly).

Egg-box diagram of a semigroup (II)

The diagram of the semigroup generated by these three transformations:

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 2 & 5 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 4 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 5 & 2 & 5 & 5 \end{pmatrix}$.

Let:

- I, Λ be finite index sets,
- T be a semigroup,
- $P = (p_{\lambda i})_{\lambda \in \Lambda, i \in I}$ be a $|\Lambda| \times |I|$ matrix over the set $T \cup \{0\}$.

Let $\mathscr{M}^0(T; I, \Lambda; P)$ be the set $(I \times T \times \Lambda) \cup \{0\}$ with multiplication:

$$(i,s,\lambda)\cdot(j,t,\mu) = \begin{cases} (i,sp_{\lambda j}t,\mu) & \text{if } p_{\lambda j} \neq 0. \\ 0 & \text{otherwise.} \end{cases}$$

and $0 \cdot \text{anything is } 0$.

Then $\mathscr{M}^0(T; I, \Lambda; P)$ is a Rees 0-matrix semigroup.

$\mathcal{M}^0[C_2; \{1, 2\}, \{1, 2, 3\}; P].$

If J is a \mathscr{J} -class of a semigroup, define J^* , the *principal factor* of J, to be the semigroup $J \cup \{0\}$, with multiplication:

$$x * y = \begin{cases} xy & \text{if } x, y, xy \in J. \\ 0 & \text{otherwise.} \end{cases}$$

The punchline: if J is a regular \mathscr{J} -class, then J^* is (isomorphic to) a Rees 0-matrix semigroup where the underlying semigroup is a group.

Graham, N. and Graham, R. and Rhodes J. Maximal Subsemigroups of Finite Semigroups. Journal of Combinatorial Theory, 4:203-209, 1968.

Collaboration

Let M be a maximal subsemigroup of a finite semigroup S.

- M contains all but one \mathscr{J} -class of S, J.
- **2** M intersects every \mathcal{H} -class of S, or is a union of \mathcal{H} -classes.
- **③** If J is non-regular, then $M = S \setminus J$. Otherwise J is regular.
- If M doesn't lack J completely, then M ∩ J corresponds to a special type of subsemigroup of J*.

Example: monogenic semigroups (non-group)

 $S=\langle a\rangle.$ We've done groups.

We've done the infinite monogenic semigroup $(F_{\{a\}} \cong \mathbb{N})$.

Maximal subsemigroups of finite zero-simple semigroups (finite regular Rees 0-matrix semigroups over groups)

The theorem tells us to get a maximal subsemigroup we can:

- Remove a whole row of the semigroup.
- Remove a whole column of the semigroup.
- Replace the group by a maximal subgroup.
- Remove the complement of a maximal rectangle of zeroes.

(With certain conditions).

		*	*	
*	*			*
*		*	*	*

The egg-box diagram of J

Egg-box diagram

 $\lambda_1 \quad \lambda_2 \quad \lambda_3 \quad \lambda_4$

i1	*			*
i2			*	
i3		*		

Maximal rectangle

27 / 35

Suppose $S = \langle X \rangle$, finite, and X is irredundant.

- Every maximal subsemigroup lacks only one \mathscr{J} -class, J.
- Max. subsemigroups arise from $J \Leftrightarrow J$ contains a generator.
- If J is non-regular, we remove it entirely.
- If J is maximal, then the max. subsemigroups are in one-to-one correspondence with max. subsemigroups of J^* .
- If J is non-maximal, it's harder.

 ${\cal S}$ is the semigroup generated by the following transformations:

$$\begin{aligned} \sigma_1 &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 6 & 5 & 2 & 6 \end{pmatrix} \\ \sigma_2 &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 4 & 4 & 3 \end{pmatrix} \\ \sigma_3 &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 2 & 3 & 5 \end{pmatrix} \\ \sigma_4 &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \\ \sigma_5 &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 1 & 5 & 2 & 1 \end{pmatrix} \end{aligned}$$

- |S| = 2384
- $\bullet \ S$ is not regular
- S has 7 \mathscr{J} -classes.
- 4 J-classes contain generators.

J-class no. 1: non-regular; maximal

J_1 is non-regular.

𝓕-class no. 2: regular; maximal

$$J_2^* \cong K_4$$
 (Klein 4-group).

J-class no. 3: regular; non-maximal

$$J_3^* \cong \mathscr{M}^0(C_2; 2, 2; P).$$

J-class no. 4: regular; non-maximal... and very big

 J_4 is non-maximal and regular.

End.