Maximal subsemigroups of finite semigroups

Wilf Wilson

7 th November 2014

Definition (maximal subgroup)

Let G be a group and let H be a subgroup of G . Then H is maximal if:

- \bullet $H \neq G$.
- \bullet $H \le U \le G \Rightarrow U = G$.

Definition (maximal subsemigroup)

Let S be a semigroup and let T be a subsemigroup of S. Then T is maximal if:

- \bullet $T \neq S$.
- \bullet $T \le U \le S \Rightarrow U = S$.

Definition (maximal subsemigroup)

Let S be a semigroup and let $T \leq S$. Then T is maximal if:

- $S \neq T$.
- For all $x \in S \setminus T$: $\langle T, x \rangle = S$.
- Maximal sub(semi)groups are as big as possible in some sense.
- They let you find all sub(semi)groups.
- Any subsemigroup lacking just a single element is maximal.
- There can be lots.
- **O** Their sizes can differ
- They exist (at least for finite semigroups^{*}).

Our first maximal subgroups

Subgroups of prime index are maximal.

Let $S = \{0, 1\}$, with multiplication modulo 2.

Let $S = F_X$, where $|X| = n$.

For example if $X = \{a, b\}$, then $F_X = \{a, b, aa, bb, ab, ba, aaa, bab, ...\}$.

Let N_n be the null semigroup with n elements (i.e. $a \cdot b = 0$ for all a, b).

A subsemigroup of a finite group is a subgroup*.

So the maximal subsemigroups of a finite group are its maximal subgroups.

Now some pre-requisites.

Definition (idempotent)

An element x of a semigroup is *idempotent* if $x^2=x$. We call such an element an idempotent.

Need to introduce Green's $\mathscr{R}, \mathscr{L}, \mathscr{H}, \mathscr{J}$ relations for a semigroup S.

These are equivalence relations defined on the set S as follows:

- $x\mathscr{R}y$ if and only if $xS^1=yS^1.$
- $x \mathscr{L} y$ if and only if $S^1 x = S^1 y.$
- \bullet $\mathscr{H} = \mathscr{R} \cap \mathscr{L}$.

•
$$
x \mathcal{J} y
$$
 if and only if $S^1 x S^1 = S^1 y S^1$.

Egg-box diagram of a semigroup (I)

For an element x in a semigroup S, we write W_x to be the $\mathscr W$ -class of x.

- \bullet A $\mathscr J$ -class is *regular* if it contains an idempotent. Else non-regular.
- \circ \mathscr{J} -classes form a partition.
- \bullet \mathscr{L} -classes are unions of \mathscr{R} and \mathscr{L} -classes.
- \bullet \mathscr{R} and \mathscr{L} -classes intersect in \mathscr{H} -classes.
- \bullet $\mathscr J$ -classes can be partially ordered:

$$
J_x \leq J_y \Leftrightarrow S^1 x S^1 \subseteq S^1 y S^1
$$

Also note for later that $S^1(xy)S^1=S^1x(yS^1)\subseteq S^1xS^1.$ Hence:

- \bullet $J_{xy} \leq J_x$.
- $J_{xu} \leq J_u$ (shown similarly).

Egg-box diagram of a semigroup (II)

The diagram of the semigroup generated by these three transformations:

 $\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 2 & 5 & 3 \end{smallmatrix}\right)$, $\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 4 & 1 & 1 \end{smallmatrix}\right)$, $\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 5 & 2 & 5 & 5 \end{smallmatrix}\right)$.

Let:

- \bullet I, Λ be finite index sets.
- \bullet T be a semigroup,
- \bullet $P = (p_{\lambda i})_{\lambda \in \Lambda, i \in I}$ be a $|\Lambda| \times |I|$ matrix over the set $T \cup \{0\}.$

Let $\mathscr{M}^{0}(T; I, \Lambda; P)$ be the set $(I \times T \times \Lambda) \cup \{0\}$ with multiplication:

$$
(i,s,\lambda)\cdot (j,t,\mu)=\begin{cases} (i, s p_{\lambda j}t,\mu) & \text{if } p_{\lambda j}\neq 0.\\ 0 & \text{otherwise.} \end{cases}
$$

and $0 \cdot$ anything is 0.

Then $\mathscr M^0(T;I,\Lambda;P)$ is a *Rees 0-matrix semigroup*.

If J is a $\mathscr J$ -class of a semigroup, define J^* , the principal factor of J , to be the semigroup $J \cup \{0\}$, with multiplication:

$$
x * y = \begin{cases} xy & \text{if } x, y, xy \in J. \\ 0 & \text{otherwise.} \end{cases}
$$

The punchline: if J is a regular $\mathscr J$ -class, then J^* is (isomorphic to) a Rees 0-matrix semigroup where the underlying semigroup is a group.

Graham, N. and Graham, R. and Rhodes J. R Maximal Subsemigroups of Finite Semigroups. Journal of Combinatorial Theory, 4:203-209, 1968.

Collaboration

Let M be a maximal subsemigroup of a finite semigroup S .

- \bullet *M* contains all but one $\mathscr J$ -class of *S*, *J*.
- M intersects every \mathscr{H} -class of S, or is a union of \mathscr{H} -classes.
- If J is non-regular, then $M = S \setminus J$. Otherwise J is regular.
- \bullet If M doesn't lack J completely, then $M \cap J$ corresponds to a special type of subsemigroup of J^* .

Example: monogenic semigroups (non-group)

 $S = \langle a \rangle$. We've done groups.

We've done the infinite monogenic semigroup $(F_{\{a\}}\cong\mathbb{N}).$

Maximal subsemigroups of finite zero-simple semigroups (finite regular Rees 0-matrix semigroups over groups)

The theorem tells us to get a maximal subsemigroup we can:

- Remove a whole row of the semigroup.
- Remove a whole column of the semigroup.
- Replace the group by a maximal subgroup.
- Remove the complement of a maximal rectangle of zeroes.

(With certain conditions).

The egg-box diagram of J

Row 1

Row 2

Row 3

Egg-box diagram

Maximal rectangle

Suppose $S = \langle X \rangle$, finite, and X is irredundant.

- Every maximal subsemigroup lacks only one $\mathscr J$ -class, J.
- Max. subsemigroups arise from $J \Leftrightarrow J$ contains a generator.
- \bullet If J is non-regular, we remove it entirely.
- \bullet If J is maximal, then the max. subsemigroups are in one-to-one correspondence with max. subsemigroups of J^* .
- \bullet If J is non-maximal, it's harder.

 S is the semigroup generated by the following transformations:

$$
\begin{array}{l} \sigma_1=\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 6 & 5 & 2 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 5 & 4 & 4 & 3 \\ \sigma_3=\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 2 & 3 & 5 & 5 \\ 6 & 4 & 2 & 1 & 3 & 6 \\ 6 & 4 & 2 & 1 & 3 & 6 \\ \sigma_5=\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 2 & 1 & 3 & 6 \\ 6 & 5 & 1 & 5 & 2 & 1 \end{smallmatrix}\right)\end{array}\right)
$$

- $|S| = 2384$
- \bullet S is not regular
- S has $7 \mathcal{J}$ -classes.
- \bullet 4 $\mathscr J$ -classes contain generators.

J -class no. 1: non-regular; maximal

 J_1 is non-regular.

J -class no. 2: regular; maximal

$$
J_2^* \cong K_4
$$
 (Klein 4-group).

J -class no. 3: regular; non-maximal

$$
J_3^*\cong \mathscr{M}^0(C_2;2,2;P).
$$

J -class no. 4: regular; non-maximal... and very big

 J_4 is non-maximal and regular.

End.