Transformation semigroups & minimal ideals

Wilf Wilson

31st March 2015

Wilf Wilson [Transformation semigroups & minimal ideals](#page-44-0) 31^{st} March 2015 1 / 30

Computational semigroup theory

- We want to store semigroups and calculate facts about them without needing a list of all the elements to hand.
- Specifying a semigroup by a generating set of transformations is a good way.

Transformations (of a finite set)

What are transformations, and what are they like?

A transformation of a finite set Ω is a function $f : \Omega \to \Omega$.

We may as well insist that $\Omega = \{1, 2, \ldots, n\}.$ We call a transformation of $\{1, 2, \ldots, n\}$ a transformation on n points. In group theory we have permutation groups.

 \bullet e.g. S_n .

In semigroup theory we have transformation semigroups.

 \bullet e.g. T_n .

Permutations vs. transformations

We can write permutations in two-line notation:

• e.g.
$$
g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}
$$

And we can do the same for transformations:

• e.g.
$$
f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 3 & 1 \end{pmatrix}
$$

For permutations we have the *order* of a permutation.

i.e. the least positive integer n such that $g^n = \mathsf{id}.$

$$
\bullet \ \langle g \rangle = \{g, g^2, \dots, g^{n-1}, g^n\}.
$$

For transformations we have the *index* and the *period* of a transformation.

i.e. the least positive integers m,r such that $f^m=f^{m+r}.$

$$
\circ \langle f \rangle = \{f, f^2, \dots, \underbrace{f^m, f^{m+1}, \dots, f^{m+r-1}}_{\text{A cyclic group of order } r}\}.
$$

The kernel and the image of a transformation

Let f be a transformation on n points.

The image of f, im(f), is the set $\{(i)f : i \in \{1, 2, ..., n\}\}.$

The kernel of f, ker(f), is the equivalence relation on $\{1, 2, ..., n\}$ which relates i and j whenever $(i) f = (j) f$.

The kernel and the image of a transformation

Let f be a transformation on n points.

The image of f, im(f), is the set $\{(i)f : i \in \{1, 2, ..., n\}\}.$

The kernel of f, ker(f), is the equivalence relation on $\{1, 2, ..., n\}$ which relates i and j whenever $(i) f = (j) f$.

For a permutation g, im $(g) = \{1, 2, \ldots, n\}$ and ker (g) is equality.

Wilf Wilson **[Transformation semigroups & minimal ideals](#page-0-0)** 31st March 2015 7 / 30

The operation in a transformation semigroup is *composition of functions*. The composition $f \circ q$ of two transformations f and q is defined by:

$$
(x)f \circ g = ((x)f)g
$$
 for all $x \in \{1, 2, ..., n\}.$

Note that
$$
im(fg) = \{((x)f)g : x \in \{1, 2, ..., n\}\}\
$$

= $\{(i)g : i \in im(f)\}\$
= $im(f) \cdot g$

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 8 / 30

The kernel and image of a transformation: an example

Let
$$
f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}
$$

The kernel and image of a transformation: an example

Let
$$
f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}
$$

• Then $\text{im}(f) = \{1, 2, 5, 6, 7\}.$

The kernel and image of a transformation: an example

Let
$$
f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}
$$

• Then
$$
im(f) = \{1, 2, 5, 6, 7\}.
$$

• ker(f) has equivalence classes:

$$
\{4, 6\} = (1)f^{-1},
$$

$$
\{1, 3, 9\} = (2)f^{-1},
$$

$$
\{2\} = (5)f^{-1}
$$

$$
\{5, 8\} = (6)f^{-1},
$$

and
$$
\{7\} = (7)f^{-1}.
$$

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 9 / 30

The rank of a transformation

Let f be a transformation.

```
The rank of f, rank(f), is equal to |im(f)|.
```
Equivalently:

The rank of f is the number of equivalence classes of ker(f).

Let f be a transformation.

The rank of f, rank(f), is equal to $|im(f)|$.

Equivalently:

The rank of f is the number of equivalence classes of ker(f).

i.e. rank
$$
(f)
$$
 = $\left| \frac{\{1, 2, ..., n\}}{\ker(f)} \right| = |\text{im}(f)|$

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 10 / 30

A very important rule to consider when composing transformations is:

rank $(xy) \leq \min \{rank(x),rank(y)\}$

A very important rule to consider when composing transformations is:

$$
\mathsf{rank}(xy) \leq \min\left\{\mathsf{rank}(x),\mathsf{rank}(y)\right\}
$$

Proof.
\n•
$$
\operatorname{rank}(xy) = |\operatorname{im}(xy)| = |\operatorname{im}(x) \cdot y| \le |\operatorname{im}(x)| = \operatorname{rank}(x)
$$

\n• $\operatorname{rank}(xy) = |\operatorname{im}(xy)| = |\operatorname{im}(x) \cdot y| \le |\{1, 2, ..., n\} \cdot y| = \operatorname{rank}(y)$

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 11 / 30

Composition of transformations

Our old example: let $f=\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}$

Let q be another transformation.

- Consider two distinct points $i, j \in \text{im}(f)$.
- If $(i)g = (j)g$ then we say that g collapses the pair $\{i, j\}$.
	- q collapses some pair in im(f) if and only if rank(fq) \lt rank(f).

Semigroup diagram: rank

If you have been to a talk about semigroups before, you might recognise these semigroup diagrams.

Notice that rank decreases as you move further down the diagram.

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 13 / 30

Let $S = (S, \cdot)$ be a semigroup and let $I \subseteq S$ be a non-empty subset of S.

Then I is an *ideal* if:

 $I \cdot S \subseteq I$ and $S \cdot I \subseteq I$.

Equivalently:

 $is \in I$ and $si \in I$ for all $i \in I, s \in S$.

Let $S = (S, \cdot)$ be a semigroup and let $I \subseteq S$ be a non-empty subset of S.

Then I is an *ideal* if:

 $I \cdot S \subseteq I$ and $S \cdot I \subseteq I$.

Equivalently:

 $is \in I$ and $si \in I$ for all $i \in I, s \in S$.

I like to think of ideals as black holes.

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 14 / 30

For a semigroup S and an element $x \in S$ the set:

 S^1xS^1

is an ideal of S and is called the principal ideal generated by x .

Semigroup diagram: principal ideal

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 16 / 30

Two elements lie in the same grid if they generate the same principal ideal.

(We call these grids $\mathscr J$ -classes this is how they are defined).

Semigroup diagram: principal ideal

Two elements lie in the same grid if they generate the same ideal.

(We call these \mathscr{D} - or \mathscr{J} -classes this is how they are defined).

An element in the upper pink \mathscr{D} -class generates this ideal.

- A finite semigroup has a finite number of ideals.
- **O** The intersection of two ideals is an ideal.

Therefore a finite semigroup has a *minimal ideal* (w.r.t. containment).

Semigroup diagram: minimal ideal

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 19 / 30

Let S be a finite transformation semigroup, and let $x \in S$.

x is in the minimal ideal of $S \Leftrightarrow \text{rank}(x)$ is smallest possible in S.

That is, the minimal ideal is precisely the set of elements of minimal rank.

For example:

For example:

To see if the semigroup is synchronising.

For example:

- To see if the semigroup is synchronising.
- To calculate the zero of a semigroup (or prove it doesn't exist).

For example:

- To see if the semigroup is synchronising.
- To calculate the zero of a semigroup (or prove it doesn't exist).
- To calculate all the *other* elements of the minimal ideal.
- **BAD:** getting all of the elements and looking at them in turn.
	- \bullet Exponential complexity in n .
- BETTER: using the ideas I'm about to share. \bullet
	- Quadratic complexity in n .
	- Joint work with James Mitchell.

An example

Let $S = \langle \sigma, \tau \rangle$ where:

are transformations on 5 points.

The graph: the $\binom{5}{2}$ $_2^5)+5$ vertices

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 24 / 30

The graph: the $\binom{5}{2}$ $\binom{5}{2} \cdot 2$ edges

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 25 / 30

The graph: the 6 collapsible pairs

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 26 / 30

The two types of pairs

The $\binom{5}{2}$ $_2^5$) $=$ 10 pairs fall into two types: those which can be collapsed, and those which can not.

The two types of pairs

The $\binom{5}{2}$ $_2^5$) $=$ 10 pairs fall into two types: those which can be collapsed, and those which can not.

Our collapsible pairs:

The other pairs:

$$
\{3, 5\}\sigma = \{4\}
$$

$$
\{2, 4\}\tau = \{2\}
$$

$$
\{1, 2\}\tau^2 = \{2\}
$$

$$
\{1, 4\}\tau^2 = \{2\}
$$

$$
\{1, 3\}\sigma\tau^2 = \{2\}
$$

$$
\{1, 5\}\sigma\tau^2 = \{2\}
$$

$$
{2,3}
$$

$$
{2,5}
$$

$$
{3,4}
$$

$$
{4,5}
$$

Every element in S must have different images for i and j if $\{i, j\}$ is not collapsible.

S must have an element x with minimal rank r .

- \circ Take an element $f \in S$.
- Then $f \cdot x$ also has minimal rank.

 \Rightarrow We can right-multiply any f to obtain an element of minimal rank. \Rightarrow For any non-minimal f, there is a collapsible pair of points in im(f).

- Start with any $f \in S$, and collapse pairs until you can't.
- You now have an element of the minimal ideal.

Our collapsible pairs:

$$
\{3, 5\}\sigma = \{4\}
$$

$$
\{2, 4\}\tau = \{2\}
$$

$$
\{1, 2\}\tau^2 = \{2\}
$$

$$
\{1, 4\}\tau^2 = \{2\}
$$

$$
\{1, 3\}\sigma\tau^2 = \{2\}
$$

$$
\{1, 5\}\sigma\tau^2 = \{2\}
$$

Our collapsible pairs:

Let
$$
r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}
$$

$$
\{3, 5\}\sigma = \{4\}
$$

$$
\{2, 4\}\tau = \{2\}
$$

$$
\{1, 2\}\tau^2 = \{2\}
$$

$$
\{1, 4\}\tau^2 = \{2\}
$$

$$
\{1, 3\}\sigma\tau^2 = \{2\}
$$

$$
\{1, 5\}\sigma\tau^2 = \{2\}
$$

Our collapsible pairs:

Let
$$
r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}
$$

$$
\{3, 5\}\sigma = \{4\}
$$

$$
\{2, 4\}\tau = \{2\}
$$

$$
\{1, 2\}\tau^2 = \{2\}
$$

$$
\{1, 4\}\tau^2 = \{2\}
$$

$$
\{1, 3\}\sigma\tau^2 = \{2\}
$$

$$
\{1, 5\}\sigma\tau^2 = \{2\}
$$

Collapse pair
$$
\{3,5\}
$$
 in $\mathsf{im}(r_0)$:

$$
r_1:=r_0\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}
$$

 $\ddot{}$

Our collapsible pairs:

$$
\{3,5\}\sigma = \{4\}
$$

$$
\{2,4\}\tau = \{2\}
$$

$$
\{1,2\}\tau^2 = \{2\}
$$

$$
\{1,4\}\tau^2 = \{2\}
$$

$$
\{1,3\}\sigma\tau^2 = \{2\}
$$

$$
\{1,5\}\sigma\tau^2 = \{2\}
$$

Let
$$
r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}
$$

Collapse pair $\{3, 5\}$ in im (r_0) :

$$
r_1 := r_0 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}
$$

Collapse pair $\{1, 4\}$ in im (r_1) :

$$
r_2 := r_1 \tau^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 5 & 2 & 5 \end{pmatrix}
$$

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 29 / 30

Our collapsible pairs:

$$
\{3,5\}\sigma = \{4\}
$$

$$
\{2,4\}\tau = \{2\}
$$

$$
\{1,2\}\tau^2 = \{2\}
$$

$$
\{1,4\}\tau^2 = \{2\}
$$

$$
\{1,3\}\sigma\tau^2 = \{2\}
$$

$$
\{1,5\}\sigma\tau^2 = \{2\}
$$

Let
$$
r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}
$$

Collapse pair $\{3, 5\}$ in im (r_0) :

$$
r_1 := r_0 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}
$$

Collapse pair $\{1,4\}$ in im (r_1) :

$$
r_2 := r_1 \tau^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 5 & 2 & 5 \end{pmatrix}
$$

No collapsible pairs \Rightarrow r_2 minimal.

Wilf Wilson [Transformation semigroups & minimal ideals](#page-0-0) 31^{st} March 2015 29 / 30

End.