Calculating an element of minimal rank in a finite transformation semigroup

Wilf Wilson University of St Andrews

14th April 2015

Based on idea by Peter Cameron (via, and with, James Mitchell)

Wilf WilsonUniversity of St Andrews

Calculating an element of minimal rank in a f

14th April 2015 1 / 20

Definition

A semigroup (S,*) is a set S with an associative binary operation * on S. We usually just refer to the semigroup as S.

Combinatorial problems crop up all the time in the study of semigroups!

2 / 20

Computational semigroup theory

- We want to calculate facts about semigroups without having to look at every single element.
- Doing this efficiently can be difficult.

Computational semigroup theory

- We want to calculate facts about semigroups without having to look at every single element.
- Doing this efficiently can be difficult.
- I implement my ideas in the Semigroups package for the computer algebra system GAP.

Transformations (of a finite set)

A transformation of a finite set Ω is a function $f: \Omega \to \Omega$.

We call a transformation of $\{1, 2, ..., n\}$ a transformation on n points.

Transformations (of a finite set)

A transformation of a finite set Ω is a function $f: \Omega \to \Omega$.

We call a transformation of $\{1, 2, ..., n\}$ a transformation on n points.

The composition $f \circ g$ of two transformations f and g is defined as usual:

$$(x)f \circ g = ((x)f)g$$
 for all $x \in \{1, 2, \dots, n\}$.

This is associative, so we can consider *transformation semigroups*.

Permutations vs. transformations

We can write permutations in two-line notation:

• e.g.
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}$$

And we can do the same for transformations:

• e.g.
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 3 & 1 \end{pmatrix}$$

Permutations vs. transformations

In group theory we have permutation groups, and Cayley's theorem. • e.g. S_n .

We semigroups we have transformation semigroups and an analogue. \bullet e.g. $T_n.$

The kernel and the image of a transformation, f

The image of f, im(f), is the set $\{(i)f : i \in \{1, 2, ..., n\}\}$. The kernel of f, ker(f), is the equivalence relation on $\{1, 2, ..., n\}$ which relates i and j whenever (i)f = (j)f.

The kernel and the image of a transformation, f

The image of f, im(f), is the set $\{(i)f : i \in \{1, 2, ..., n\}\}$. The kernel of f, ker(f), is the equivalence relation on $\{1, 2, ..., n\}$ which relates i and j whenever (i)f = (j)f.

For a permutation g, $im(g) = \{1, 2, ..., n\}$ and ker(g) is equality.

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a f 14th April 2015 7 / 20

The **rank** of f, rank(f), is equal to |im(f)|.

Equivalently:

The rank of f is the number of equivalence classes of ker(f).

The **rank** of f, rank(f), is equal to |im(f)|.

Equivalently:

The rank of f is the number of equivalence classes of ker(f).

i.e.
$$\operatorname{rank}(f) = \left| \frac{\{1, 2, \dots, n\}}{\operatorname{ker}(f)} \right| = |\operatorname{im}(f)|$$

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a f 14th April 2015 8 / 20

The **rank** of f, rank(f), is equal to |im(f)|.

Equivalently:

The rank of f is the number of equivalence classes of ker(f).

i.e.
$$\operatorname{rank}(f) = \left| \frac{\{1, 2, \dots, n\}}{\operatorname{ker}(f)} \right| = |\operatorname{im}(f)|$$

A transformation on n points has a rank somewhere between 1 and n.

8 / 20

The rank of a transformation

A very important rule to consider when composing transformations is:

 $\mathsf{rank}(fg) \le \min{\{\mathsf{rank}(f),\mathsf{rank}(g)\}}$

A very important rule to consider when composing transformations is:

 $\operatorname{rank}(fg) \leq \min \{\operatorname{rank}(f), \operatorname{rank}(g)\}$

For a pair $\{i, j\}$ we say that g collapses the pair $\{i, j\}$ if (i)g = (j)g.

g collapses some pair in im(f) if and only if rank(fg) < rank(f)

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a f 14th April 2015 9 / 20

Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}$

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}$$

• Then $im(f) = \{1, 2, 5, 6, 7\}.$

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}$$

- Then $im(f) = \{1, 2, 5, 6, 7\}.$
- ker(f) has equivalence classes:

$$\{ 4, 6 \} = (1)f^{-1},$$

$$\{ 1, 3, 9 \} = (2)f^{-1},$$

$$\{ 2 \} = (5)f^{-1}$$

$$\{ 5, 8 \} = (6)f^{-1},$$

and
$$\{ 7 \} = (7)f^{-1}.$$

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a f 14th April 2015 10 / 20

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}$$

- Then $im(f) = \{1, 2, 5, 6, 7\}.$
- ker(f) has equivalence classes:

$$\{4, 6\} = (1)f^{-1}, \\ \{1, 3, 9\} = (2)f^{-1}, \\ \{2\} = (5)f^{-1} \\ \{5, 8\} = (6)f^{-1}, \\ \text{and } \{7\} = (7)f^{-1}.$$

• $\operatorname{rank}(f) = 5$

Wilf WilsonUniversity of St Andrews

Calculating an element of minimal rank in a f

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 1 & 6 & 1 & 7 & 6 & 2 \end{pmatrix}$$

- Then $im(f) = \{1, 2, 5, 6, 7\}.$
- ker(f) has equivalence classes:

$$\{4, 6\} = (1)f^{-1},$$

$$\{1, 3, 9\} = (2)f^{-1},$$

$$\{2\} = (5)f^{-1}$$

$$\{5, 8\} = (6)f^{-1},$$
and
$$\{7\} = (7)f^{-1}.$$

• $\operatorname{rank}(f) = 5$

• f collapses the pairs $\{4,6\}$, $\{1,3\}$, $\{1,9\}$, $\{3,9\}$, $\{5,8\}$.

Wilf WilsonUniversity of St Andrews Cal

Calculating an element of minimal rank in a f

For various reasons, we wish to quickly get hold of an element of minimal rank in a transformation semigroup.

For various reasons, we wish to quickly get hold of an element of minimal rank in a transformation semigroup.

For example:

- To see if the semigroup is synchronising (remember Artur's talk?).
- To calculate the zero of a semigroup (or prove it doesn't exist).
- To calculate the elements of the minimal ideal.

Ways of calculating

- BAD: getting all of the elements and looking at their ranks in turn.
 - Exponential complexity in n.
- **BETTER**: using the ideas I'm about to share.
 - Quadratic complexity in *n*.
 - Original ideal from Peter Cameron.
 - Adapted with James Mitchell (my supervisor).

An example

Let $S = \langle \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle$ where:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

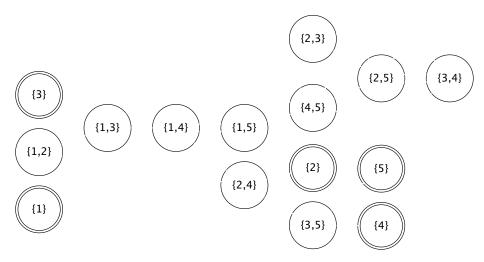
and
$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}$$

are transformations on 5 points.

Wilf WilsonUniversity of St Andrews

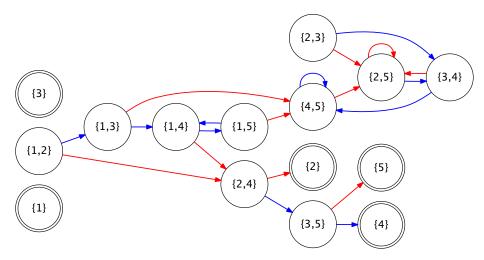
Calculating an element of minimal rank in a f

Graph: the $\binom{5}{2} + 5$ vertices $\tau = (\frac{1}{4} \frac{2}{2} \frac{3}{5} \frac{4}{2} \frac{5}{5}), \sigma = (\frac{1}{1} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{4})$

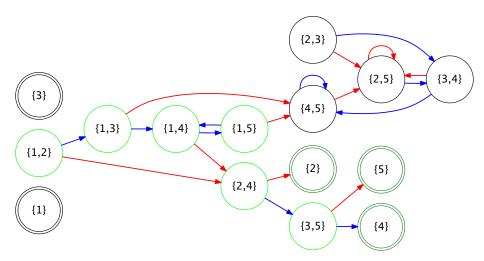


Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a f 14th April 2015 14 / 20

Graph: the $\binom{5}{2} \cdot 2$ edges $\tau = (\frac{1}{4} \frac{2}{2} \frac{3}{5} \frac{4}{2} \frac{5}{5}), \sigma = (\frac{1}{1} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{4})$



The 6 collapsible pairs $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}, \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$



The two types of pairs $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}, \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$

The $\binom{5}{2} = 10$ pairs fall into two types: those which can be collapsed, and those which can not.

The two types of pairs $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}, \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$

The $\binom{5}{2} = 10$ pairs fall into two types: those which can be collapsed, and those which can not.

Our collapsible pairs:

The other pairs:

$$\{3,5\}\sigma = \{4\}$$

$$\{2,4\}\tau = \{2\}$$

$$\{1,2\}\tau^2 = \{2\}$$

$$\{1,4\}\tau^2 = \{2\}$$

$$\{1,3\}\sigma\tau^2 = \{2\}$$

$$\{1,5\}\sigma\tau^2 = \{2\}$$

$$\begin{array}{l} \{2,3\} \\ \{2,5\} \\ \{3,4\} \\ \{4,5\} \end{array}$$

Every element in S must have different images for i and j if $\{i, j\}$ is not collapsible. S must have an element x with minimal rank r.

- Take an element $f \in S$.
- Then $f \circ x$ also has minimal rank.

 \Rightarrow We can multiply any non-minimal f by something to decrease its rank. \Rightarrow For any non-minimal f, there is a collapsible pair of points in im(f).

- **1** Start with any $f \in S$.
- ② Collapse pairs until you can't any more.
- 3 You now have an element of the minimal ideal.

Let's do it

$$au = (\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{smallmatrix})$$
, $\sigma = (\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{smallmatrix})$

Our collapsible pairs:

$$\{3,5\}\sigma = \{4\}$$

$$\{2,4\}\tau = \{2\}$$

$$\{1,2\}\tau^2 = \{2\}$$

$$\{1,4\}\tau^2 = \{2\}$$

$$\{1,3\}\sigma\tau^2 = \{2\}$$

$$\{1,5\}\sigma\tau^2 = \{2\}$$

Let's do it

$$au = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

Our collapsible pairs:

Let
$$r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

$$\{3,5\}\sigma = \{4\}$$

$$\{2,4\}\tau = \{2\}$$

$$\{1,2\}\tau^2 = \{2\}$$

$$\{1,4\}\tau^2 = \{2\}$$

$$\{1,3\}\sigma\tau^2 = \{2\}$$

$$\{1,5\}\sigma\tau^2 = \{2\}$$

Our collapsible pairs:

Let
$$r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

$$\{3,5\}\sigma = \{4\}$$

$$\{2,4\}\tau = \{2\}$$

$$\{1,2\}\tau^2 = \{2\}$$

$$\{1,4\}\tau^2 = \{2\}$$

$$1,3\}\sigma\tau^2 = \{2\}$$

$$1,5\}\sigma\tau^2 = \{2\}$$

Collapse pair $\{3,5\}$ in im (r_0) :

$$r_1 := r_0 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}$$

Let's do it

$$au = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

Our collapsible pairs:

Let
$$r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

$$\{3,5\}\sigma = \{4\}$$

$$\{2,4\}\tau = \{2\}$$

$$\{1,2\}\tau^{2} = \{2\}$$

$$\{1,4\}\tau^{2} = \{2\}$$

$$\{1,3\}\sigma\tau^{2} = \{2\}$$

$$1,5\}\sigma\tau^{2} = \{2\}$$

6.00

Collapse pair $\{3,5\}$ in im (r_0) :

$$r_1 := r_0 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}$$

Collapse pair $\{1, 4\}$ in im (r_1) :

$$r_2 := r_1 \tau^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 5 & 2 & 5 \end{pmatrix}$$

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a f

Let's do it

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 2 & 5 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

Our collapsible pairs:

$$\{3,5\}\sigma = \{4\}$$

$$\{2,4\}\tau = \{2\}$$

$$\{1,2\}\tau^2 = \{2\}$$

$$\{1,4\}\tau^2 = \{2\}$$

$$\{1,3\}\sigma\tau^2 = \{2\}$$

$$\{1,5\}\sigma\tau^2 = \{2\}$$

Let
$$r_0 = \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 4 \end{pmatrix}$$

Collapse pair $\{3, 5\}$ in im (r_0) :

$$r_1 := r_0 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}$$

Collapse pair $\{1, 4\}$ in im (r_1) :

$$r_2 := r_1 \tau^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 5 & 2 & 5 \end{pmatrix}$$

No collapsible pairs $\Rightarrow r_2$ minimal.

End.