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Semigroup

Definition

A semigroup (S, ∗) is a set S with an associative binary operation ∗ on S.
We usually just refer to the semigroup as S.

Combinatorial problems crop up all the time in the study of semigroups!
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Computational semigroup theory

We want to calculate facts about semigroups without having to look
at every single element.

Doing this efficiently can be difficult.

I implement my ideas in the Semigroups package for the computer
algebra system GAP.
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Transformations (of a finite set)

A transformation of a finite set Ω is a function f : Ω→ Ω.

We call a transformation of {1, 2, . . . , n} a transformation on n points.

The composition f ◦ g of two transformations f and g is defined as usual:

(x)f ◦ g = ((x)f)g for all x ∈ {1, 2, . . . , n}.

This is associative, so we can consider transformation semigroups.
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Permutations vs. transformations

We can write permutations in two-line notation:

e.g. g =

(
1 2 3 4 5
4 2 5 1 3

)
And we can do the same for transformations:

e.g. f =

(
1 2 3 4 5
4 3 1 3 1

)
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Permutations vs. transformations

In group theory we have permutation groups, and Cayley’s theorem.

e.g. Sn.

We semigroups we have transformation semigroups and an analogue.

e.g. Tn.
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The kernel and the image of a transformation, f

The image of f , im(f), is the set {(i)f : i ∈ {1, 2, . . . , n}}.

The kernel of f , ker(f), is the equivalence relation on {1, 2, . . . , n}
which relates i and j whenever (i)f = (j)f .

For a permutation g, im(g) = {1, 2, . . . , n} and ker(g) is equality.
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The rank of a transformation, f

The rank of f , rank(f), is equal to |im(f)|.

Equivalently:

The rank of f is the number of equivalence classes of ker(f).

i.e. rank(f) =

∣∣∣∣{1, 2, . . . , n}ker(f)

∣∣∣∣ = |im(f)|

A transformation on n points has a rank somewhere between 1 and n.
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The rank of a transformation

A very important rule to consider when composing transformations is:

rank(fg) ≤ min {rank(f), rank(g)}

For a pair {i, j} we say that g collapses the pair {i, j} if (i)g = (j)g.

g collapses some pair in im(f) if and only if rank(fg) < rank(f)
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The kernel and image of a transformation: an example

Let f =

(
1 2 3 4 5 6 7 8 9
2 5 2 1 6 1 7 6 2

)

Then im(f) = {1, 2, 5, 6, 7}.
ker(f) has equivalence classes:

{4, 6} = (1)f−1,

{1, 3, 9} = (2)f−1,

{2} = (5)f−1

{5, 8} = (6)f−1,

and {7} = (7)f−1.

rank(f) = 5

f collapses the pairs {4, 6}, {1, 3}, {1, 9}, {3, 9}, {5, 8}.

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a finite transformation semigroup14th April 2015 10 / 20



The kernel and image of a transformation: an example

Let f =

(
1 2 3 4 5 6 7 8 9
2 5 2 1 6 1 7 6 2

)
Then im(f) = {1, 2, 5, 6, 7}.

ker(f) has equivalence classes:

{4, 6} = (1)f−1,

{1, 3, 9} = (2)f−1,

{2} = (5)f−1

{5, 8} = (6)f−1,

and {7} = (7)f−1.

rank(f) = 5

f collapses the pairs {4, 6}, {1, 3}, {1, 9}, {3, 9}, {5, 8}.

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a finite transformation semigroup14th April 2015 10 / 20



The kernel and image of a transformation: an example

Let f =

(
1 2 3 4 5 6 7 8 9
2 5 2 1 6 1 7 6 2

)
Then im(f) = {1, 2, 5, 6, 7}.
ker(f) has equivalence classes:

{4, 6} = (1)f−1,

{1, 3, 9} = (2)f−1,

{2} = (5)f−1

{5, 8} = (6)f−1,

and {7} = (7)f−1.

rank(f) = 5

f collapses the pairs {4, 6}, {1, 3}, {1, 9}, {3, 9}, {5, 8}.

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a finite transformation semigroup14th April 2015 10 / 20



The kernel and image of a transformation: an example

Let f =

(
1 2 3 4 5 6 7 8 9
2 5 2 1 6 1 7 6 2

)
Then im(f) = {1, 2, 5, 6, 7}.
ker(f) has equivalence classes:

{4, 6} = (1)f−1,

{1, 3, 9} = (2)f−1,

{2} = (5)f−1

{5, 8} = (6)f−1,

and {7} = (7)f−1.

rank(f) = 5

f collapses the pairs {4, 6}, {1, 3}, {1, 9}, {3, 9}, {5, 8}.

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a finite transformation semigroup14th April 2015 10 / 20



The kernel and image of a transformation: an example

Let f =

(
1 2 3 4 5 6 7 8 9
2 5 2 1 6 1 7 6 2

)
Then im(f) = {1, 2, 5, 6, 7}.
ker(f) has equivalence classes:

{4, 6} = (1)f−1,

{1, 3, 9} = (2)f−1,

{2} = (5)f−1

{5, 8} = (6)f−1,

and {7} = (7)f−1.

rank(f) = 5

f collapses the pairs {4, 6}, {1, 3}, {1, 9}, {3, 9}, {5, 8}.

Wilf WilsonUniversity of St Andrews Calculating an element of minimal rank in a finite transformation semigroup14th April 2015 10 / 20



Aim

For various reasons, we wish to quickly get hold of an element of minimal
rank in a transformation semigroup.

For example:

To see if the semigroup is synchronising (remember Artur’s talk?).

To calculate the zero of a semigroup (or prove it doesn’t exist).

To calculate the elements of the minimal ideal.
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Ways of calculating

BAD: getting all of the elements and looking at their ranks in turn.

Exponential complexity in n.

BETTER: using the ideas I’m about to share.

Quadratic complexity in n.
Original ideal from Peter Cameron.
Adapted with James Mitchell (my supervisor).
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An example

Let S = 〈σ, τ〉 where:

σ =

(
1 2 3 4 5
1 3 4 5 4

)
and

τ =

(
1 2 3 4 5
4 2 5 2 5

)

are transformations on 5 points.
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Graph: the
(

5
2

)
+5 vertices τ = ( 1 2 3 4 5

4 2 5 2 5 ), σ = ( 1 2 3 4 5
1 3 4 5 4 )

 {1} 

 {2} 
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 {5} 
{1,2}

{1,3}

{2,4}

{1,4}

{4,5}

{1,5}

{2,3}

{2,5} {3,4}

{3,5}
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Graph: the
(

5
2

)
· 2 edges τ = ( 1 2 3 4 5

4 2 5 2 5 ), σ = ( 1 2 3 4 5
1 3 4 5 4 )
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The 6 collapsible pairs τ = ( 1 2 3 4 5
4 2 5 2 5 ), σ = ( 1 2 3 4 5

1 3 4 5 4 )

 {1} 

 {2} 

 {3} 

 {4} 

 {5} 
{1,2}

{1,3}

{2,4}

{1,4}

{4,5}

{1,5}

{2,3}

{2,5} {3,4}

{3,5}
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The two types of pairs τ = ( 1 2 3 4 5
4 2 5 2 5 ), σ = ( 1 2 3 4 5

1 3 4 5 4 )

The
(
5
2

)
= 10 pairs fall into two types: those which can be collapsed, and

those which can not.

Our collapsible pairs:

{3, 5}σ = {4}
{2, 4}τ = {2}
{1, 2}τ2 = {2}
{1, 4}τ2 = {2}
{1, 3}στ2 = {2}
{1, 5}στ2 = {2}

The other pairs:

{2, 3}
{2, 5}
{3, 4}
{4, 5}

Every element in S must have
different images for i and j if {i, j}
is not collapsible.
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The idea

S must have an element x with minimal rank r.

Take an element f ∈ S.

Then f ◦ x also has minimal rank.

⇒ We can multiply any non-minimal f by something to decrease its rank.
⇒ For any non-minimal f , there is a collapsible pair of points in im(f).

1 Start with any f ∈ S.

2 Collapse pairs until you can’t any more.

3 You now have an element of the minimal ideal.
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Let’s do it τ = ( 1 2 3 4 5
4 2 5 2 5 ), σ = ( 1 2 3 4 5

1 3 4 5 4 )

Our collapsible pairs:

{3, 5}σ = {4}
{2, 4}τ = {2}
{1, 2}τ2 = {2}
{1, 4}τ2 = {2}
{1, 3}στ2 = {2}
{1, 5}στ2 = {2}

Let r0 = σ =

(
1 2 3 4 5
1 3 4 5 4

)

Collapse pair {3, 5} in im(r0):

r1 := r0σ =

(
1 2 3 4 5
1 4 5 4 5

)

Collapse pair {1, 4} in im(r1):

r2 := r1τ
2 =

(
1 2 3 4 5
2 2 5 2 5

)
No collapsible pairs ⇒ r2 minimal.
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End.
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