Computing with finite semigroups

Wilf Wilson University of St Andrews

2nd June 2015

Wilf Wilson University of St Andrews

Computing with finite semigroups

2nd June 2015 1 / 13

Definition

A semigroup (S, *) is a set S with an associative binary operation * on S.

Definition

A semigroup (S, *) is a set S with an associative binary operation * on S.

The operation combines two elements a and b in S to give a third, a * b. Associativity means that for any three elements, a * (b * c) = (a * b) * c.

Groups versus semigroups

- There are 2 groups of order 10.
- There are 12,418,001,077,381,302,684 semigroups of order 10.

Wilf Wilson University of St Andrews

Computing with finite semigroups

Simple example: \mathbb{N}

- $\mathbb{N} = \{1, 2, 3, \ldots\}$ with addition.
 - the sum of two natural numbers is a natural number
 - addition is associative

Subsemigroups of \mathbb{N} are called *numeric* semigroups.

A fundamental example: T_n

 T_n , the *full transformation semigroup*: the set of all functions from $\{1, 2, ..., n\}$ to itself, with composition of functions.

 ${\cal T}_n$ is analogous to the symmetric group ${\cal S}_n$ in group theory.

Subsemigroups of T_n are called *transformation* semigroups.

People want to study algebra.

Given a semigroup ${\boldsymbol{S}}$ you might want to know some algebraic properties:

- How big is S?
- What are the congruences on S?
- Is S a group?
- Is the operation on S commutative?

This is well-developed for group theory.

Wilf Wilson University of St Andrews

Computing with finite semigroups

- Semigroups of numbers
 - An element can be stored as a number.

- Semigroups of numbers
 - An element can be stored as a number.
- Semigroups of transformations
 - An element can be stored as a list of numbers.
 - [1, 3, 2, 3] could represent $1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 2, 4 \mapsto 3$.

- Semigroups of numbers
 - An element can be stored as a number.
- Semigroups of transformations
 - An element can be stored as a list of numbers.
 - [1, 3, 2, 3] could represent $1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 2, 4 \mapsto 3$.
- Semigroups of square matrices over a ring
 - An element can be stored as a list of lists of ring elements. • [[1, 0], [0, 1]] could be the identity matrix.

- Semigroups of numbers
 - An element can be stored as a number.
- Semigroups of transformations
 - An element can be stored as a list of numbers.
 - [1, 3, 2, 3] could represent $1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 2, 4 \mapsto 3$.
- Semigroups of square matrices over a ring
 - An element can be stored as a list of lists of ring elements.
 - [[1, 0], [0, 1]] could be the identity matrix.
- Semigroups of binary relations
 - Stored as a list of pairs.

• [[1, 1], [2, 2], [3, 3], [4, 4], [1, 2], [1, 3], [1, 4], [2, 4]] could represent the divisibility relation on $\{1, 2, 3, 4\}$.

The benefits

- Helps people learn about semigroups.
- Helps people test hypotheses, finding counter-examples, etc.
- Helps people notice patterns.
 - It can direct pure mathematics research.

The benefits

- Helps people learn about semigroups.
- Helps people test hypotheses, finding counter-examples, etc.
- Helps people notice patterns.
 - It can direct pure mathematics research.
- Leads to a lot of collaboration with the computer science.
- The ideas behind the algorithms might have application elsewhere.

 $T_{10} \ \mathrm{has} \ 10^{10}$ elements.

If each element needs $100~{\rm bytes}$ of memory, we'll need $10^{12}~{\rm bytes}$ in total.

• We need to calculate without having all the elements to hand.

If a calculation involves looking at all 10^{10} elements, that will be slow.

• We need to calculate without needing to look at every element.

We can define a semigroup by a *generating set*. This saves us having to store all the elements.

```
e.g. \mathbb N is generated by 1.
```

If a, b, c are three transformations in T_n then $S = \langle a, b, c \rangle$ is the semigroup consisting of all products involving a, b, c.

Wilf Wilson University of St Andrews

Computing with finite semigroups

Commutativity

A semigroup is commutative if a * b = b * a for all $a, b \in S$.

Commutativity

- A semigroup is commutative if a * b = b * a for all $a, b \in S$.
- Proposition

A semigroup S is commutative if and only if its generators commute.

 T_{10} has 10^{10} elements! But T_{10} is generated by 3 elements: $X = \{a, b, c\}$. So we can determine whether T_{10} is commutative in ≤ 6 multiplications:

```
for { a, b } in X:
    if not a * b = b * a then:
        return false
return true
```

End.