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Me

First-year maths PhD student at St Andrews.
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What do I do?

Good question: hopefully this talk will give an idea.

I come up with ways to efficiently calculate things about semigroups.

‘Computational semigroup theory’.
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Definitions (not too important)

Definition (Semigroup)

A semigroup is a set with an associative binary operation.

Finite for today.

Can think of semigroup as a set of finite transformations

f : {1, 2, . . . , n} → {1, 2, . . . , n}.

which is closed under composition, e.g.

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 1 1

)}
.

Key point: a semigroup will be defined by its generators.

i.e. S := 〈f, g〉 for some transformations f and g.
There are nn transformations of the set {1, 2, . . . , n}.
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GAP demonstration: group theory
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Computational group theory

It’s well developed, mature: 50+ years.

Fast, polynomial-time algorithms.

Randomised algorithms.
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But we still want to do it!
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Semigroups are just harder

The number of groups of order 10:

2.

The number of semigroups of order 10: 12,418,001,077,381,302,684.

We can never hope to do as well as groups.
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Use the generators: Commutativity

Semigroup: S = 〈f1, f2, . . . , fk〉.

How do we check if S is commutative?

Easy!

Every element is a product of the fi.

If the generators commute, the semigroup commutes (and vice versa).

So we just need to check the generators.
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Use theorems: Nilpotency

Definition (Nilpotent)

A semigroup is nilpotent if each element has some power equal to 0.

Definition (Nilpotency degree)

For a nilpotent semigroup, the nilpotency degree is the least positive r
such that every product of r elements equals 0.

Theorems:

Nilpotent ⇔ there is a 0 but no other idempotents.

Nilpotency degree = length of longest chain of principal ideals + 1.
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Use what you already know: Synchronizing

Definition (Synchronizing semigroup)

A semigroup is synchronizing if it contains a constant function.

A constant map e is right-zero, i.e. it satisfies xe = e for all x.

If you know your semigroup has a zero, just look at that.

If you have computed the minimal ideal, then just look in there.
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Find equivalent definitions: Inverse semigroups

Definition (An inverse)

An element x has an inverse y if xyx = x.

Definition (Inverse semigroup)

A semigroup is inverse if every element has a unique inverse.

For a semigroup S, the following are equivalent:

S is inverse (every element has exactly one inverse).

Every element has an inverse and the idempotents commute.

Every R-class and L -class contains exactly one idempotent.
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Code-in implications: “True methods” in GAP

Band ⇒ regular.

Simple and H -trivial ⇒ rectangular band.

Inverse semigroup and D-trivial ⇒ semilattice.

Zero semigroup ⇒ commutative.

Regular and commutative ⇒ inverse.
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Difficult things to calculate

Pretty much everything.

Checking isomorphism between two semigroups.

Finding the endomorphism monoid of a semigroup.

Minimal degree transformation representation of a semigroup.

Useful, and what I want to think about next.
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Practical remarks

GAP: find it at gap-system.org

Semigroups package for GAP.
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Practical remarks

End.
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