Computational algebra (& semigroup theory)

Wilf Wilson University of St Andrews

12th November 2015

Computers in maths

- Basic mathematical operations
- Statistics
- Data analysis
- Abstract computation
- Algebra: creating algorithms to answer algebraic questions

Computational algebra

- Graph theory:
 - Find a k-colouring
 - Find the chromatic number
 - Find the maximal cliques
 - Determine various properties
 - Are two graphs isomorphic?

Computational algebra

- Linear algebra:
 - Solve a system of linear equations
 - Diagonalisation
 - Calculate the determinant
 - Calculate the rank
 - Calculate the inverse

Computational algebra

- Group theory:
 - Calculate the normal subgroups
 - Calculate the conjugacy classes
 - Calculate the size
 - Are two groups isomorphic?
 - Identify a group

Pure maths at St Andrews

- Fractal geometry
- Dynamical systems
- Combinatorics
- Group theory and semigroup theory
- Computational algebra

Computational algebra at St Andrews

- Centre for Interdisciplinary Research in Computational Algebra
- GAP
- $\circ~{\rm SEMIGROUPS}$ package for ${\rm GAP}$

Semigroup theory

Definition (Semigroup)

A semigroup is a set with an associative binary operation.

What do I actually do?

- Research semigroups
- Think up good algorithms
- Implement algorithms
- Publish software
- Analyse complexity

There is lots of potential

- Come up with algorithms where none exist
- Implement new algorithms
- Improve on existing algorithms:
 - New mathematical ideas
 - New programming techniques
- Parallelisation
- Use computational algebra tools to help your research

End.