Computing maximal subsemigroups

Wilf Wilson School of Maths & Stats

3rd December 2015

Semigroup diagrams

Green's relations $\mathcal{D}, \mathcal{L}, \mathcal{R}, \mathcal{H}$ partition a semigroup in a useful way.

D-classes the blocks
L-classes the columns in a block
R-classes the rows in a block
H-classes the small squares

1968: Maximal subsemigroups of finite semigroups

- A maximal subsemigroup:
 - lacks part of <u>one</u> *D*-class.

A maximal subsemigroup either:

- \circ is a union of \mathscr{H} -classes, or
- intersects every \mathscr{H} -class.

1968: Maximal subsemigroups of finite semigroups

- A maximal subsemigroup:
 - lacks part of <u>one</u> *D*-class.

A maximal subsemigroup either:

- \circ is a union of \mathscr{H} -classes, or
- intersects every \mathscr{H} -class.

1968: Maximal subsemigroups of finite semigroups

- A maximal subsemigroup:
 - lacks part of one *D*-class.

A maximal subsemigroup either:

- is a union of *H*-classes, or
- intersects every \mathscr{H} -class.

1968: Maximal subsemigroups of finite semigroups

- A maximal subsemigroup:
 - lacks part of one *D*-class.

A maximal subsemigroup either:

- \circ is a union of \mathscr{H} -classes, or
- intersects every \mathcal{H} -class.

1968: Maximal subsemigroups of finite semigroups

- A maximal subsemigroup:
 - lacks part of one *D*-class.

A maximal subsemigroup either:

- is a union of \mathscr{H} -classes, or
- intersects every \mathscr{H} -class.

Maximal semigroups of arbitrary finite semigroups

Only need to consider \mathcal{D} -classes which contain generators.

Maximal *D*-classes:

 Correspondence with maximal subsemigroups of a special Rees 0-matrix semigroup.

Non-maximal *D*-class:

- Non-regular: remove entirely.
- Regular: more complicated.

Rees 0-matrix semigroups

- Let G be a semigroup (group).
- Let I and Λ be index sets.
- Let $P = (p_{\lambda,i})$ be a $|\Lambda| \times |I|$ matrix with entries in $G \cup \{0\}$.

Then the Rees 0-matrix semigroup $\mathscr{M}^0[I,G,\Lambda;P]$ is the set

 $(I\times G\times \Lambda)\cup \{0\}$

with multiplication

$$0x = x0 = 0 \text{ for all } x \in \mathscr{M}^0[I, G, \Lambda; P], \text{ and}$$
$$(i, g, \lambda)(j, h, \mu) = \begin{cases} (i, gp_{\lambda, j}h, \mu) & \text{if } p_{\lambda, j} \neq 0, \\ 0 & \text{if } p_{\lambda, j} = 0. \end{cases}$$

Visualising a Rees 0-matrix semigroup

G	G	G	G			
G	G	G	G			
G	G	G	G			
0						

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

Remove the zero

G	G	G	G	
G	G	G	G	
G	G	G	G	

0

$$P = \begin{pmatrix} g_1 & g_2 & g_3 \\ g_4 & g_5 & g_6 \\ g_7 & g_8 & g_9 \\ g_{10} & g_{11} & g_{12} \end{pmatrix}$$

Keep the zero

$$P = (g_1)$$

Wilf Wilson School of Maths & Stats

Computing maximal subsemigroups

3rd December 2015 7 / 1

G	G	G	G			
G	G	G	G			
G	G	G	G			
0						

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G		
G	G	G	G		
G	G	G	G		
0					

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G		
G	G	G	G		
G	G	G	G		
0					

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G		
G	G	G	G		
G	G	G	G		
0					

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G		
G	G	G	G		
G	G	G	G		
0					

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G		
G	G	G	G		
G	G	G	G		
0					

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G		
G	G	G	G		
G	G	G	G		
0					

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G	
G	G	G	G	
G	G	G	G	
0				

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G			
G	G	G	G			
G	G	G	G			
0						

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & g_7 \end{pmatrix}$$

G	G	G	G			
G	G	G	G			
G	G	G	G			
0						

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & 0 \end{pmatrix}$$

G	G	G	G
G	G	G	G
G	G	G	G

0

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & 0 \end{pmatrix}$$

		G	G
G	G	G	G
G	G	G	G
0			

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & 0 \end{pmatrix}$$

G	G	G	G	
G	G	G	G	
G	G	G	G	
0				

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & 0 \end{pmatrix}$$

G	G	G	G	
G	G	G	G	
G	G	G	G	
0				

$$P = \begin{pmatrix} g_1 & 0 & g_2 \\ 0 & g_3 & g_4 \\ g_5 & 0 & 0 \\ g_6 & 0 & 0 \end{pmatrix}$$

Let $R = \mathscr{M}^0[I, G, \Lambda; P]$ be a Rees 0-matrix semigroup.

If $M \leq_{\max} R$ intersects every \mathscr{H} -class of R non-trivially then

$$M \cong \mathscr{M}^0[I, V, \Lambda; Q],$$

where:

 $\circ V \leq_{\max} G$, and

• Q is a $|\Lambda| \times |I|$ matrix over $V \cup \{0\}$.

The difficulty

G	G	G	G
G	G	G	G
G	G	G	G
0			

The difficulty

Old approach:

- These maximal subsemigroups have a specific type of generating set.
- Create all the generating sets, and discard those that generate R.

New approach:

- Perform an easy normalization.
- This way we obtain groups G_k (one for each connected component).
- Perform some easy group-theoretic calculations.

New approach

This is a maximal subsemigroup if and only if:

 $1 V \leq_{\max} G, \text{ and }$

2
$$G_k \leq g_k^{-1} V g_k$$
 for all k .

Arbitrary finite semigroups: non-maximal regular \mathscr{D} -classes

Let M be a maximal subsemigroup arising from the lower \mathscr{D} -class, D.

Then either:

- M lacks some rows of D.
- M lacks some columns of D.
- M ∩ D corresponds to a maximal semigroup of the Rees
 0-matrix semigroup of
 "maximal rectangle" or
 "maximal subgroup" type.

End.