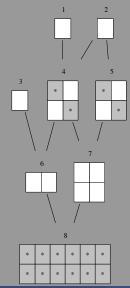
Computing maximal subsemigroups THE CONCLUSION

Wilf Wilson

10th February 2016

What is a semigroup?



It's a set with an associative binary operation, for example

- $\circ (\emptyset, \emptyset).$
- \circ (N,+).

A visual interpretation is useful.

Today, maximality is all about containment.

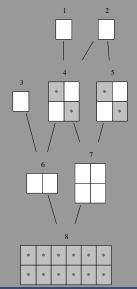
Definition (Maximal subsemigroup)

A maximal subsemigroup is a proper subsemigroup which is not contained in any other proper subsemigroup.

Examples of semigroups and their maximal subsemigroups

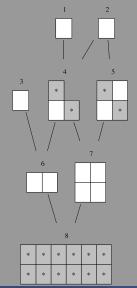
- $\circ \ \ensuremath{\varnothing}$ is a maximal subsemigroup of the trivial semigroup.
- $\mathbb{R} \setminus \{0\}$ is a maximal subsemigroup of (\mathbb{R}, \times) .
- \mathbb{R}^+ is a maximal subsemigroup of $(\mathbb{R} \setminus \{0\}, \times)$.
- $\mathbb{N} = \{0, 1, 2, \ldots\}$ is a maximal subsemigroup of $(\mathbb{Z}, +)$.
- $\{0, 2, 3, \ldots\}$ is a maximal subsemigroup of $(\mathbb{N}, +)$.
- $\{1, 2, 3, \ldots\}$ is a maximal subsemigroup of $(\mathbb{N}, +)$.
- $\{2,3,\ldots\}$ is the maximal subsemigroup of $(\{1,2,\ldots\},+).$
- $T_n \setminus \{\text{maps of rank } n-1\}$ is a maximal subsemigroup of T_n .

- Does every semigroup have maximal subsemigroups? $((1,\infty),\times)?$
- How many maximal subsemigroups can a semigroup have?
- How big is a maximal subsemigroup?
- Are maximal subsemigroups interesting?
- How do you calculate the maximal subsemigroups of a semigroup?



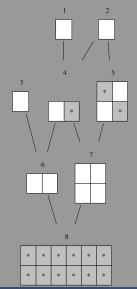
A maximal subsemigroup lacks part of precisely one \mathscr{D} -class.

- 1 is a union of rows and columns
- 2 is a union of only rows
- 3 is a union of only columns
- \P contains part of every \mathscr{H} -class
- is empty



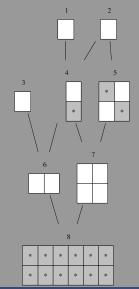
A maximal subsemigroup lacks part of precisely one \mathscr{D} -class.

- 1) is a union of rows and columns
- 2 is a union of only rows
- 3 is a union of only columns
- \P contains part of every \mathscr{H} -class
- is empty



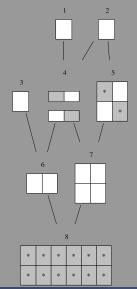
A maximal subsemigroup lacks part of precisely one \mathscr{D} -class.

- 1 is a union of rows and columns
- 2 is a union of only rows
- 3 is a union of only columns
- \P contains part of every \mathscr{H} -class
- is empty



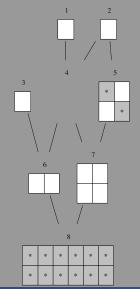
A maximal subsemigroup lacks part of precisely one \mathscr{D} -class.

- 1 is a union of rows and columns
- 2 is a union of only rows
- 3 is a union of only columns
- \P contains part of every \mathscr{H} -class
- is empty



A maximal subsemigroup lacks part of precisely one \mathscr{D} -class.

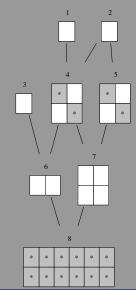
- 1 is a union of rows and columns
- 2 is a union of only rows
- 3 is a union of only columns
- ④ contains part of every ℋ-class
- is empty



A maximal subsemigroup lacks part of precisely one \mathscr{D} -class.

- 1 is a union of rows and columns
- 2 is a union of only rows
- 3 is a union of only columns
- \P contains part of every \mathscr{H} -class
- is empty

The overall technique



Go through each \mathscr{D} -class in turn.

Work out which maximal subsemigroups are possible of each type, if any.

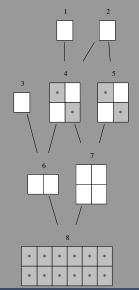
The principal factor of a \mathcal{D} -class D is a semigroup, denoted D^* .

It is defined to be $(D \cup \{0\}, *)$, with the operation * defined by:

$$x * y = \begin{cases} xy & \text{if } x, y, xy \in D. \\ 0 & \text{otherwise.} \end{cases}$$

The principal factor is essentially a Rees 0-matrix semigroup.

Some of the problems to consider



Foremost, a maximal subsemigroup must be a **subsemigroup**.

So, a maximal subsemigroup must:

- give a subsemigroup of the principal factor.
- contain everything generated by the other \mathscr{D} -classes.
- be closed under the action of the other *D*-classes.

For (most of) the rest of this talk, D is a *specific* \mathscr{D} -class.

We can't consider D in isolation since the rest of the semigroup interferes.

We construct *three* digraphs relative to D, and use them to calculate the maximal subsemigroups which you can get by removing bits of D.

The digraphs $\Gamma_{\mathscr{R}}$ and $\Gamma_{\mathscr{L}}$.

 $\Gamma_{\mathscr{R}}$ captures:

- how the rest of semigroup moves around the **rows** of *D*;
- \circ what the rest of the semigroup generates inside D.

Time for an example on the board.

 $\Gamma_{\mathscr{L}}$ is the 'dual' of this, for columns of D.

 Γ captures:

- how the rest of the semigroup moves around the **idempotents** of D;
- \circ what the rest of the semigroup generates in D.

Time for an example on the board.

Maximal subsemigroups of type (1)

Let M be a subset such that $M\cap D$ is a union of rows and columns. Theorem

M is a maximal subsemigroup if and only if

- the rows form a collection of strongly connected components of $\Gamma_{\mathscr{R}}$;
- the cols form a collection of strongly connected components of $\Gamma_{\mathscr{L}}$;
- these collections each have no out-neighbours in $\Gamma_{\mathscr{R}}$ or $\Gamma_{\mathscr{L}}$;
- every red edge of Γ is incident to either a row or column in M;
- the subgraph of Γ induced by the rows and columns of M is maximal with respect to containing no black edges.

Maximal subsemigroups of types (2) and (3)

Let M be a subset such that $M\cap D$ is a union of rows only.

Theorem

M is a maximal subsemigroup if and only if:

- M is not contained in a maximal subsemigroup of type (1);
- the missing rows form a strongly connected component of $\Gamma_{\mathscr{R}}$;
- that strongly connected component has no in-neighbours in $\Gamma_{\mathscr{R}}$;
- that strongly connected component is not red.

The theorem for maximal subsemigroups of type (3) is dual.

Maximal subsemigroups of type (4)

- Define E(D) to be the set of idempotents of D.
- Define X to be the set of generators above D.

Let M be a subset which intersects every \mathscr{H} -class of D.

Theorem

M is a maximal subsemigroup if and only if $(M \cap D) \cup \{0\}$ is a maximal subsemigroup of D^* containing $E(D)X \cap D$.

Maximal subsemigroups of type (5)

Theorem

A maximal subsemigroup can be formed by removing D if and only if there are no maximal subsemigroups of types (1) to (4), and D isn't generated by the rest of the semigroup.

Summary of the algorithm.

Work out all of the information contained in the semigroup diagram:

- the Green's relations $(\mathcal{D}, \mathcal{R}, \text{ and } \mathcal{L});$
- the *D*-class partial order;
- the location of the generators;
- the idempotents.

Go through each \mathscr{D} -class in turn:

- Construct $\Gamma_{\mathscr{R}}$, $\Gamma_{\mathscr{L}}$, and Γ ;
- Use these digraphs to find maximal subsemigroups of types (1) to (3);
- Look for maximal subsemigroups of type (4);
- Look for maximal subsemigroups of type (5).

Return the results!

End.