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Transformations in GAP

A transformation is a function on the set {1, . . . , n}. Examples:

f =

(
1 2 3 4 5 6
4 1 1 5 3 3

)
, g =

(
1 2 3 4 5 6
4 5 1 2 1 4

)
.

Composition of transformations: fg =

(
1 2 3 4 5 6
2 4 4 1 1 1

)
.

In GAP, a transformation is stored as a list:

f = [ 4, 1, 1, 5, 3, 3 ], g = [ 4, 5, 1, 2, 1, 4 ], etc.

gap> f := Transformation([4, 1, 1, 5, 3, 3]);

gap> S := Semigroup(f);



The definition of a semigroup

A semigroup is a set (S) with an associative binary operation (∗).

Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z).

In GAP: IsSemigroup = IsMagma and IsAssociative.
In GAP: IsMonoid = IsMagmaWithOne and IsAssociative.
In GAP: IsGroup = IsMagmaWithInverses and IsAssociative.

We wish to compute with semigroups.



Specifying a semigroup by multiplication table

A finite semigroup can be specified by a multiplication table. An example:

1 2 3 4

1 1 2 3 4
2 2 1 3 4
3 3 4 3 4
4 4 3 3 4

The row and column labels are the elements.

The entry in row i, column j defines the product i · j.

Multiplication tables are abstract, but usually impractical.



An aside: counting multiplication tables

1 2 3 4 n

All tables 1 16 19,683 4,294,967,269 nn2

Magmas 1 10 3,330 178,981,952 ∼nn2
/n !

Semigroups 1 4 18 126 ?
Groups 1 1 1 2 ?

There are 12,418,001,077,381,302,684 semigroups of order 10.



Some examples of semigroups

Examples:

Transformations, with composition of functions.

Partial permutations, with composition of (partial) functions.

n× n matrices, with matrix multiplication.

Finite strings, with concatenation.

Binary relations, with composition of relations.

Subsets of a set, with union/intersection.

We can specify such a semigroup with reference only to its elements.



Semigroups by generating set

A semigroup can be specified by a set of generators.
The elements are all possible combinations of the generators. Example:

(N,+) = 〈1〉.

Question: what is a generating set for (N,×)?

Theme: we try to compute without having to find all the elements.



What might we want to compute?

Test commutativity.

Test membership.

Compute the (number of) elements.

Count the idempotents.

Find the maximal subgroups or subsemigroups.

Find the Green’s relations.

Green’s equivalence relations L , R, and H :

xL y if and only if x = ay and y = bx (for some a, b).

xRy if and only if x = ya and y = xb (for some a, b).

xH y if and only if xL y and xRy.



Finitely presented semigroups

Specify a semigroup by generators and relations. An example:

〈x, y | xy = yx, x3 = x2, y2 = y〉

Works for finite semigroups, and many infinite semigroups.

Difficult to write algorithms.

Leads to problems of undecidability.

Often, we deal with semigroups that we know are finite.



Naive exhaustive enumeration of a semigroup

Given a set of generators A of a finite semigroup S, we can find all the
elements of S with the following procedure:

Define S = A.

For each s ∈ S, and for each a ∈ A:
if sa 6∈ S:

add a to S.

Return S as the set of elements.

Requires |S| · |A| multiplications and searches.



The right Cayley graph for S = {x, y, a, b, c}; generating set {x, y}:
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Associativity gives us left multiplication: x(yzt) = (xyz)t.

Thus we obtain the left Cayley graph and the Green’s relations.



How can we avoid enumerating the semigroup?

A fundamental problem in computational semigroup theory.

Use the generators.

Use theory.

Use the representation.

Use the power of GAP!



Case study: commutative semigroups

Commutative semigroup: where x ∗ y = y ∗ x for all x and y.

How do we test for commutativity?



Case study: counting idempotents

An idempotent: an element x where x ∗ x = x.

Some semigroups have no idempotents.

Some semigroups consist only of idempotents.

There exist semigroups at every point between these extremes.

How do we count the idempotents in a semigroup?



Using the representation of a semigroup

Full transformation semigroup:

xL y if and only if im(x) = im(y).

xRy if and only if ker(x) = ker(y).

Full matrix semigroup (over a field):

xL y if and only if x and y have the same row space.

xRy if and only if x and y have the same column space.

Partition monoid:

xL y if and only if x∗x = y∗y.

xRy if and only if xx∗ = yy∗.

. . .



Using the representation: transformation semigroups

A transformation ‘acts’ on points: i 7→ (i)f .

A transformation ‘acts’ on sets of points: A 7→ A · f = {(i)f : i ∈ A}.

Example : {2, 3} ·
(
1 2 3 4 5
3 5 1 5 3

)
= {1, 5}.

If s = x1x2 · · ·xm, then

im(s) = im(x1x2 · · ·xm) = im(x1) · x2 · · ·xm.

Thus: every image which occurs can be found via an orbit-style algorithm.



Using the representation: ‘orbit’ graph
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Roughly:

xRy if ker(x) = ker(y) and im(x) ∼ im(y) (plus group theory).

xL y if im(x) = im(y) and ker(x) ∼ ker(y) (plus group theory).

If there are fewer kernels/images than elements: net win!



Semigroups and Digraphs packages for GAP

Semigroups package:
gap-packages.github.io/Semigroups

Digraphs package:
gap-packages.github.io/Digraphs

gap-packages.github.io/Semigroups
gap-packages.github.io/Digraphs

