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Maximal subsemigroups?

A maximal subsemigroup is
formed by removing parts of
one D-class.

It has one of several forms.

However:

A semigroup acts on itself.
Elements can generate parts
of lower D-classes.

These things limit the maximal
subsemigroups that occur.
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The general technique

Focus on some ‘nice’ monoids!

To find the maximal subsemigroups from a D-class:

Construct a graph that captures the action on L -/R-classes.

Compute the maximal independent subsets.

Find the vertices that are not adjacent to a vertex of degree 1.



Partial transformations

Reminders:

A partial transformation of degree n is a partial map on {1, . . . , n}.
A partial transformation has a domain, a kernel, and an image.

A total transformation has domain {1, . . . , n}.
Order-preserving: i ≤ j implies (i)f ≤ (j)f .

Order-reversing: i ≤ j implies (i)f ≥ (j)f .

Notation for Green’s classes of rank n− 1:

Li L -class of elements with image {1, . . . , n} \ {i}.
Ri R-class of elements with domain {1, . . . , n} \ {i}.
R{i,j} R-class of elements with non-trivial kernel class {i, j}.



Order-preserving partial transformations

|POn| =
n∑

k=0

(
n

k

)(
n + k − 1

k

)

{L1} {L2} {Ln−1} {Ln}

{R1} {R2} {Rn−1} {Rn}{R{1,2}} {R{2,3}} {R{n−1,n}}

. . .

The graph ∆(POn) has 2n maximal independent subsets.
POn has 2n + 2n− 2 maximal subsemigroups.



Order-preserving transformations

|On| =
(

2n− 1

n

)

{L1} {L2} {Ln−1} {Ln}

{R{1,2}} {R{2,3}} {R{n−1,n}}

. . .

The graph ∆(On) has A2n−1 maximal independent subsets:

A1 = 1, A2 = A3 = 2, and Ak = Ak−2 + Ak−3 for k > 3.

On has A2n−1 + 2n− 4 maximal subsemigroups.



Order-preserving or -reversing partial transformations

|PODn| = 2|POn| − n(2n − 1)− 1

{L1, L7} {L2, L6} {L3, L5} {L4}

{R1, R7} {R2, R6} {R3, R5} {R4}

{R{1,2}, R{6,7}} {R{2,3}, R{5,6}} {R{3,4}, R{4,5}}

The graph ∆(PODn) has 2dn/2e maximal independent subsets.
PODn has 2dn/2e + n− 1 maximal subsemigroups.



The Jones monoid

|Jn| = Cn =
1

n + 1

(
2n

n

)

{Ln} {Ln−1} {Ln−2} {L2} {L1}

{Rn} {Rn−1} {Rn−2} {R2} {R1}

· · ·

Figure: The graph ∆(Jn+1).

The graph ∆(Jn+1) has 2Fn maximal independent subsets.
Jn+1 has 2Fn + 2n− 1 maximal subsemigroups.



Summary: we’ve replicated previous results, and proved many new ones.


