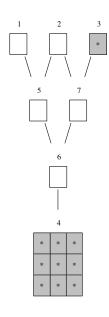
Maximal subsemigroups via independent sets

Wilf Wilson

26th April 2017



- Maximal subsemigroups?
- A maximal subsemigroup is formed by removing parts of *one* \mathscr{D} -class.
- It has one of several forms.
- However:
 - A semigroup acts on itself.
 - Elements can generate parts of lower *D*-classes.
- These things limit the maximal subsemigroups that occur.

My contributions

C. Donoven, J. D. Mitchell, and W. A. Wilson Computing maximal subsemigroups of a finite semigroup arXiv:1606.05583

J. East, J. Kumar, J. D. Mitchell, and W. A. Wilson *Maximal subsemigroup of finite transformation and partition monoids* In preparation Focus on some 'nice' monoids!

To find the maximal subsemigroups from a \mathscr{D} -class:

- Construct a graph that captures the action on \mathscr{L} -/ \mathscr{R} -classes.
- Compute the maximal independent subsets.
- Find the vertices that are *not* adjacent to a vertex of degree 1.

Partial transformations

Reminders:

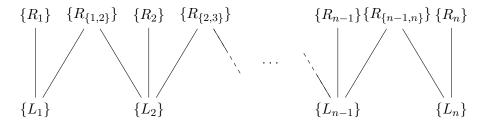
- A partial transformation of degree n is a partial map on $\{1, \ldots, n\}$.
- A partial transformation has a domain, a kernel, and an image.
- A total transformation has domain $\{1, \ldots, n\}$.
- Order-preserving: $i \leq j$ implies $(i)f \leq (j)f$.
- Order-reversing: $i \leq j$ implies $(i)f \geq (j)f$.

Notation for Green's classes of rank n-1:

- L_i \mathscr{L} -class of elements with image $\{1, \ldots, n\} \setminus \{i\}$.
- R_i \mathscr{R} -class of elements with domain $\{1, \ldots, n\} \setminus \{i\}$.
- $R_{\{i,j\}}$ \mathscr{R} -class of elements with non-trivial kernel class $\{i,j\}$.

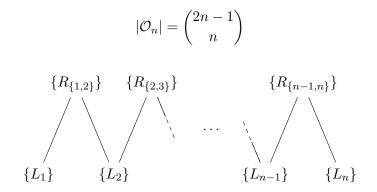
Order-preserving partial transformations

$$|\mathcal{PO}_n| = \sum_{k=0}^n \binom{n}{k} \binom{n+k-1}{k}$$



The graph $\Delta(\mathcal{PO}_n)$ has 2^n maximal independent subsets. \mathcal{PO}_n has $2^n + 2n - 2$ maximal subsemigroups.

Order-preserving transformations



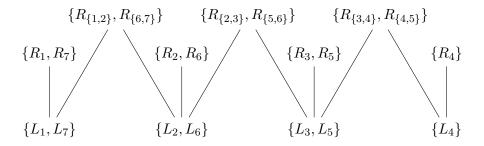
The graph $\Delta(\mathcal{O}_n)$ has A_{2n-1} maximal independent subsets:

$$A_1 = 1, \ A_2 = A_3 = 2, \ \text{and} \ A_k = A_{k-2} + A_{k-3} \ \text{for} \ k > 3.$$

 \mathcal{O}_n has $A_{2n-1} + 2n - 4$ maximal subsemigroups.

Order-preserving or -reversing partial transformations

$$|\mathcal{POD}_n| = 2|\mathcal{PO}_n| - n(2^n - 1) - 1$$



The graph $\Delta(\mathcal{POD}_n)$ has $2^{\lceil n/2 \rceil}$ maximal independent subsets. \mathcal{POD}_n has $2^{\lceil n/2 \rceil} + n - 1$ maximal subsemigroups.

The Jones monoid

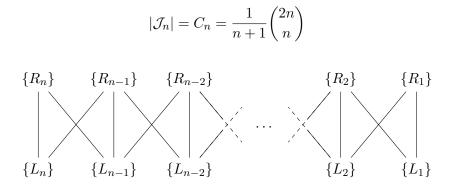


Figure: The graph $\Delta(\mathcal{J}_{n+1})$.

The graph $\Delta(\mathcal{J}_{n+1})$ has $2F_n$ maximal independent subsets. \mathcal{J}_{n+1} has $2F_n + 2n - 1$ maximal subsemigroups. Summary: we've replicated previous results, and proved many new ones.